Improved capillary electrophoretic separation and mass spectrometric detection of oligosaccharides.
نویسندگان
چکیده
We have developed a CE method for the separation of structural isomers of oligosaccharides labeled with N-quaternized benzylamine. Oligosaccharides with reducing ends were derivatized with benzylamine by reductive amination followed by quaternization to yield a fixed cation label. The benzylamine-derivatized oligosaccharides were analyzed by CE-UV in ammonium acetate buffer and off-line matrix-assisted laser desorption ionization (MALDI) MS. The method was applied to a 1 nmol sample of a model oligosaccharide (LNDFH 1). From this sample a 38 fmol diluted standard was detected. The quaternization of benzylamine-labeled products significantly improved CE separation of neutral oligosaccharides along with several structural isomers. Two hexasaccharide isomers (LNDFH I and LNDFH II) were baseline resolved using an ammonium acetate buffer. This method was also applied successfully to the profiling of oligosaccharides released from the glycoprotein RNase B. The release of 6 pmol of glycans followed by workup showed the detection of all components, with one component corresponding to 100 fmol. Micropreparative collection of CE enabled successful off-line CE-MALDI-MS without additional sample clean up. This report provides a simple and rapid method to separate and analyze oligosaccharides.
منابع مشابه
Capillary electrophoretic separation of heparin oligosaccharides under conditions amenable to mass spectrometric detection.
A capillary electrophoresis method for the separation of high-molecular-mass heparin oligosaccharides compatible with mass spectral detection was developed. Structurally defined heparin oligosaccharides ranging in size from tetrasaccharide to tetradecasaccharide were used to optimize the conditions. Applying normal and reversed polarity modes, these oligosaccharides were separated by CE under v...
متن کاملImprovement of Electrophoretic Enantioseparation of Amlodipine by Polybrene
In chiral and non-chiral electrophoretic resolution of basic drugs, adsorption of analytes to negatively charged capillary wall could lead to poor repeatability of migration time and peak area. In addition, chiral resolutions of basic drugs are commonly performed in low pH buffers. Therefore, longer analysis time due to suppression of electroosmotic flow (EOF) is another dilemma. In this wor...
متن کاملImprovement of Electrophoretic Enantioseparation of Amlodipine by Polybrene
In chiral and non-chiral electrophoretic resolution of basic drugs, adsorption of analytes to negatively charged capillary wall could lead to poor repeatability of migration time and peak area. In addition, chiral resolutions of basic drugs are commonly performed in low pH buffers. Therefore, longer analysis time due to suppression of electroosmotic flow (EOF) is another dilemma. In this wor...
متن کاملGlycan labeling strategies and their use in identification and quantification
Most methods for the analysis of oligosaccharides from biological sources require a glycan derivatization step: glycans may be derivatized to introduce a chromophore or fluorophore, facilitating detection after chromatographic or electrophoretic separation. Derivatization can also be applied to link charged or hydrophobic groups at the reducing end to enhance glycan separation and mass-spectrom...
متن کاملUnraveling the glyco-puzzle: glycan structure identification by capillary electrophoresis.
State-of-the-art high-resolution separation techniques play an important role in the full structural elucidation of glycans. Capillary electrophoresis (CE) offers a rapid yet simple method for exhaustive carbohydrate profiling. CE is a versatile analytical platform, which can be operated in several separation modes, simply by altering separation conditions during operation. For in-depth glycan ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chromatography. A
دوره 1004 1-2 شماره
صفحات -
تاریخ انتشار 2003